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In  this paper we examine the linear stability of an annular film surrounding a 
dielectric-fluid core in a tube in the presence of double layers of charges a t  the film 
core and at the film-tube interfaces, when the fluid-fluid interface is of low tension. 
In the absence of electrostatic forces, the surface tension force arising from the 
circumferential curvature destabilizes, and that from the axial curvature stabilizes 
the system. The competition is such that waves larger than the unperturbed interface 
circumference are unstable and those shorter are stable. For charged layers in the 
film, two cases are examined: (i) double-layer repulsion where the volume charge 
density is everywhere of the same sign and (ii) double-layer attraction where the 
diffusive layers next to  the film interfaces are of opposite signs. In the first case, 
double-layer repulsion and surface tension lowering stabilize the destabilizing action 
of the circumferential component of the surface tension force, and a window of 
stability can exist. I n  the case of double layers of opposite signs, double-layer 
attraction destabilizes the system, and growth rates larger than those caused by pure 
capillarity can arise. Finally, for the case of a core bounded by an infinite electrolyte, 
surface tension lowering stabilizes the destabilizing action of the circumferential 
component of the surface tension force and destabilizes the longitudinal one, 
although the magnitudes of these effects may differ. As a result the thread can 
become unstable to waves shorter than the interface circumference. 

1. Introduction 
Thc goal of this study is to examine the influence of double layers of charge and 

capillarity on the linear interfacial stability of the static arrangement of an annular 
electrolyte film surrounding a dielectric core fluid in a tube, where the fluid-fluid 
interface is of low tension. The coreannular geometry is an excellent idealization of 
the flow geometries of many technologically important processes : for example 
lubricated pipelines (cf. Preziosi, Chen & Joseph 1989), concurrent flows in packed 
beds (cf. Saez, Larbeniell & Lerec 1986), coating processes and liquid-liquid 
displacements in the presence of a wall wetting layer, e.g. in porous media as in 
tertiary oil recovery. The effects discussed below are probably most relevant for the 
latter case. We concentrate on the static arrangement in order to  isolate the effects 
and coupling of capillarity and double layers of charge. Flow introduces additional 
shear effects which can be stabilizing (Joseph, Renardy & Renardy 1984; Presiozi 
et al. 1989; Hu & Joseph 1989; Papageorgiou, Maldarelli & Rumschitzki 1990) or 

t To whom correspondence should be addressed. 
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destabilizing (Yih 1967; Hickox 1971). A complete treatment of the stability of the 
coreannular geometry will include all of these effects although the insight gained 
from the static case is essential (as i t  is in the study of pure capillarity; see references 
below). 

Capillarity governs the interfacial stability in the absence of electrostatic forces. 
The problem of the stability of an inviscid cylindrical thread was first studied by 
Plateau and then by Rayleigh (1879, 1892) neglecting the effect of a surrounding 
fluid. Tomotika (1935) extended these studies to include the effects of thread 
viscosity and an infinite outer viscous fluid, and Goren (1962) studied an annular film 
(with a gas interface) located on the outside or the inside surface of a tube. All of 
these studies indicate that for axisymmetric disturbances of the fluid interface, the 
circumferential component of the interfacial tension force has a destabilizing effect 
(large waves growing the fastest) and the axial component has a stabilizing effect 
(short waves damped the most). The competition is such that waves larger than the 
interface circumference are unstable and those smaller are stable. 

When double layers of charge are present a t  the interface, the stability picture 
changes. Felderhof (1968) first studied the influence of double layers of charge within 
the context of the stability of thin inviscid planar electrolyte films that were 
symmetric about their midplane. Pelderhof identified two modes of vibration of such 
films, a squeezing mode in which the film thickness changes and a stretching mode 
in which the thickness is constant. For the stretching mode Felderhof found that for 
long waves thc double layers of charge effectively reduce the interfacial tension, 
thereby destabilizing the system. The reason for this reduction in the interfacial 
tension is that the negative electrostatic double-layer energy lowers the overall 
interfacial energy. For the squeezing mode, movement, of the opposing interfaces 
towards each other brings charges of equal sign together, and Felderhof found that 
for long waves this double-layer repulsion strongly stabilizes the system. Various 
studies extended Felderhof s results to include viscous lamella. They demonstrated 
that, as long as the base state is one of zero flow, viscosity affects the growth rates 
but not the criteria for stability (for reviews see Gallez & Coakly 1986; Jain & 
Maldarelli 1988). Finally, Miller & Scriven (1970a, b )  studied the case of single double 
layers of charge extending from a planar interface, and outward from a spherical 
interface. They found results similar to those for the stretching mode of Felderhof: 
for long waves, the presence of the double layer effectively lowers the surface tension 
and destabilizes the system. Miller & Scriven also showed that a t  shorter waves, the 
stabilizing effect of surface tension dominates while the destabilizing action of the 
double layers disappears. 

The stability of a cylindrical interface surrounded by an electrolyte film presents 
several interacting effects because there are two curvatures, one stabilizing and one 
destabilizing, and the double layers of charge will affect each differently. The aim of 
this study is to establish the precise roles surface tension lowering and double-layer 
repulsion play in determining the cylindrical interface stability. We shall consider 
only axisymmetric disturbances. 

This study is divided into three major sections. Section 2 formulates the linear 
stability problem, and derives the dispersion equation. Section 3 presents and 
discusses neutral curves and growth rate curves, and the study ends with a summary 
and some conclusions in 94. 
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2. Formulation of linear stability theory 
2.1. Governing equations and boundary conditions 

Two immiscible, Newtonian, incompressible fluids of equal density are resting in a 
core-annular arrangement in a pipe of inner radius R2.  The interface is given by r = 

R, .  A dielectric fluid of viscosity p, and density p occupies the core region 0 < r < 
R, .  A second fluid which is a univalent electrolyte with viscosity p2  and density p 
occupies the film region R, < r < R,.  The film electrolyte is drawn from a neutral 
reservoir. Axisymmetric disturbances of the interface are defined by r(z, t )  = f ( z ,  t )  
(see figure 1). 

The equations of motion and continuity in the presence of electrostatic forces and 
with gravity neglected are 

dv 
dt 

p- = - v . ( p , - T , ) + p i v Z v i ,  

and v.vi = 0, (2.2) 

where i = 1 denotes the core fluid and i = 2 denotes the film fluid, d/dt is a convective 
derivative, P is the isotropic pressure tensor and T is the Maxwell stress tensor from 
electrostatics ( T ,  = 0). The components of P are 

pz3. = paij, (2.3) 

where p is the scalar pressure. The components of T are 

where E ,  is the dielectric constant, E the electric field, and 9 a material constant 
which depends on the way the force is separated into mechanical and electrical parts. 
Two frequently used expressions for the force density are 

aE i = E , -  1 (Kelvin) and i = p e  (Helmholtz). (2.5) 
aP 

It turns out that, owing to the fluids’ incompressibility, our final results are 
independent of $ (see $2.3). 

To determine the electric field in the electrolyte film, we assume that the interfacial 
frequencies are slow enough so as to allow the ions to  be in instantaneous thermal 
equilibrium for all interfacial positions. The absence of volume charge density in the 
core leads to a uniform potential and a zero electric field and Maxwell stress tensor 
there. In the film, assumed to have a uniform dielectric constant E,, the electrical 
potential 6, relative to the potential h of the reservoir from which the film is drawn, 
satisfies (cf. Melcher 1981) for [[&-A1 4 K T / e ] ,  

where 

87c e2n 
ee KT 

v2 -+--+- 
ar2 r a r  a ~ ~ ’  

V(6 - A )  - -2 ( 6 4 )  = 0, 

a 2  I a a 2  
(2.7) 

no is the number density of univalent cations and anions, e is the elementary _charge, 
K is the Boltzmann’s constant and T is the absolute temperature. Let @ = @ - A  be 
the potential defined relative to A. 
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h (2) Film (electrolyte) 

(1) Core (dielectric) 

- - - - -  

~~~ 

FIGURE 1 .  Schematic of the circular tube geometry detailing the electrolyte film and the 
dielectric core. 

Certain boundary conditions for our system are clear : no slip a t  the wall r = R, ; 
the velocity field is bounded at  the centreline ; the velocity field is continuous at  the 
interface r = f (z ,  t). 

Stress balances a t  the fluid interface mpst account for pressure, electrostatic, 
interfacial phase tension and viscous forces as well as Marangoni stresses which may 
occur due to gradients of the adsorbed charged species. To account for these effects 
in a consistent manner, we make two principal assumptions. First we assume that 
sorptive kinetic processes between the bulk sublayer and the surface are fast enough 
so that the surface and subsurface remain in equilibrium with one another despite the 
surface movement. The second assumption is that the interfacial thickness is much 
smaller than the lengthscale of the diffuse layer. According to this view, adsorption 
from inside the diffuse layer onto the surface is purely chemically driven. Thus we 
take the phase tension CT to be divorced from electrostatic forces and to depend only 
on the sublayer concentration nsT of cations or anions via the usual Gibbs' adsorption 
relation 

(2.8) 

where r' is the surface concentration of cations or anions. 
The tangential Marangoni stress is 

aCT aCT 
V,U = - V,lnn,++- V, In n; , a In n: a In n; 

where V, denotes the surface gradient operator. This stress exactly cancels the 
electrostatic tangential force 

n - ( T , - T , ) . t =  r e E - t = - ( e P - e l - ) V s @ , ,  

where IT, is the surface charge density and 0, the surface potential, sincc the bulk 
sublayer is in electrochemical equilibrium and therefore 

e 
K T  

Vs(ln(nsT)) = f-Vs@,. 

Consequently the tangential and normal stress balances a t  the interface are 

n - ( c - t , ) . t  = o at  T = f ( z , t ) ,  (2.9) 
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and n.(T, -T , ) .n  =-2Ha at r = f ( z , t ) ;  (2.10) 

where (2.8) in principle determines the variations in the phase tension. The kinematic 
condition at the interface is 

at r = f ( z ,  t ) ,  v = - + w -  af af 
at aZ (2.11) 

whcre v and w are the r -  and z-components of v, respectively. I n  (2.9) and (2.10) n is 
the unit vector normal to the interface defined as positive when pointing from the 
core to the film and t is the tangential unit vector a t  the interface. In  the boundary 
conditions < is the total stress tensor 

f = - p , + K + T , ,  (2.12) 

and is the fluid mechanical stress tensor 

= /Li[VVi + (VV,)“]. (2.13) 

Finally, 2H is the sum of the principal curvatures 

1 f ” 
2 H = -  f ( i+f”)~+(l+f’*)f .  

(2.14) 

I n  (2.14)f’ and f“ are respectively the first and second derivatives of the function f ( z ,  
t)  with respect to  z a t  a given time. 

To close the problem requires setting the electrical boundary conditions. In 
general, when sorption equilibrium is assumed, specifying the adsorption isotherm 
relates the surface adsorption r’ to the sublayer concentration of the charged species 
n,T and thereby permits calculation of the surface’s potentials. In  dynamic events, we 
consider the limiting case of constant surface potential of both the wall and the 
interface : 

@(r = R,) = and @(r =f(z,t)) = GI, (2.15) 

which requires of the isotherms that 

ar’ e a r 7  
- = +- a@, -KTaln (nsT) 

be infinite. It is worth noting that in the case of constant surface potential, the 
zeroth- and first-order tangential electric fields are zero and thus the tangential 
electrical (and Marangoni) stresses are each individually zero. Moreover, since 

constancy of @, requires the phase tension rr in the interfacial boundary conditions 
to  be constant as well. 

We shall now make the hydrodynamic equations and boundary conditions 
dimensionless. We scale lengths with the inner radius R,, velocities with [ a / p l ] ,  time 
with bl R , / a ] ,  pressure with [a/R,], potential with [KT/e] and the Maxwell stress 
tensor with [(K‘l’/eR,)2]. We shall use the same symbols for dimensional and 
dimensionless variables. 

The continuity equation is satisfied automatically by defining a stream function, 
Y, such that 

1 aul, 
and wi =---. i ayi u .  = -- 

a r az r ar 
(2.16) 
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Since the divergence of the Maxwell stress tensor is irrotational (cf. Felderhof 1968) 
for this case in which the ions are distributed in thermal equilibrium, taking the curl 
of (2 .1 )  eliminates the pressure and the Maxwell stress tensor. Substituting the above 
expressions for ui and wi gives the dimensionless differential equation for !Pi: 

where (2 .18 )  

The dimensionless parameters 

(2 .19 )  

appear in (2 .17 )  as a result of the non-dimensionalization proposed above. J is a 
surface tension parameter introduced by Chandrasekhar (1968)  in his study of the 
capillary instability of jets of a viscous liquid in air and m is the viscosity ratio of the 
two fluids. (The dimensionless boundary conditions are given in $2.3 in their linear 
form.) 

2.2 .  Base state 

We begin by examining the case where the interface is undisturbed. This base state 
velocity field is 

Equation (2.6) in dimensionless form is 

u ~ = w ~ = 0  for i = 1 , 2 ,  (2 .20 )  

v 2 @ - K 2 @  = 0> (2 .21 )  

where 
- 8x e2 

K = - - n R 2  
e , K T  

(2.22)  

defines the non-dimensional inverse Debye length. I ts  base state potential solution 
is 

@O(r) = alIo(Kr)  +a,K,(Kr), (2 .23 )  

where I,(.) and KO(.) are modified Bessel functions of order zero, and a, and u2 are 
constants to be determined by the dimensionless boundary conditions 

@O(r = a )  = @,,,, @O(r = 1)  = (2 .24 )  

where 
R a = >  - .  
Rl 

(2 .25 )  

We apply the two boundary conditions to get the two constants a, and a 2 :  

(2 .26 )  

(2 .27)  

where A@ = - QW. (2.28) 
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2.3. Linear stability 

We now introduce a small disturbance to the interface 

r ( z , t )  = l + ~ ( z , t ) 6 + 0 ( 6 ~ ) ,  
and thus to  the base state 

(2.29) 

1 !P(r), P ( r ) ,  @(r ) ]  = [ P ( r )  6, Po + P1(r)  6, @O(r) + @l(r)  61 + O(S2), (2.30) 

where 6 is an ordering parameter. To determine the interface stability, we expand 
the first-order variables in normal modes : 

[W)>PIV)> @ l m I  = [ ? w ) > P ( ~ ) ,  4(4l exp [ia(z--ct)l. (2.31) 

We substitute (2.30) into (2.17) and (2.21), linearize with respect to 6 and then 
substitute (2.31) to get 

and d2# l d $  
dr2 r dr 
-+-- = y24 (2.33) 

(2.34) 
d2 l'd 
dr2 r d r  

and y2 = ?+a2*  (2.35) 

a2 3 
where D 

The boundary conditions in a linearized dimensionless form are 

$2 = O  and * = O  a t  r = a ,  
dr 

(2.36) 

ll.l < co and '< d11. 00 a t  r = 0 ,  (2.37) 
dr 

(2.38) 

m[D$2 + 2a2$,] - [D$r1 + 2a2y?,] = 0 at  r = 1, (2.39) 

m d  
iar dr 
__ 

Q [dmod# 
@; dr  dr  r dr  

(dWO +-- ld@') - (dd;O)* - 7 ] = [a2-1]7 a t  r =  1, (2.40) +- ---4 -p 

111.1 V =----, (2.41) 

(2.42) 4 = 0  a t  r = a  and $+7-=0 a t  r = l .  

The dimensionless parameter Q appearing in (2.40) is the ratio of the electrostatic 
forces over the capillary forces: 

d Go 
dr  

6 

(2.43) 

F1.M 226 
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Note that the term in the square brackets in (2.43) is just the dimensional form of 
GI. Also, observe that, as in Felderhof (1968), i enters only the isotropic stress, which 
is substituted for and eliminated from the boundary conditions and the problem 
along with the pressure. 

The solution to (2.32) is 

lCri(r) = A ,  rl l (ar)  +Bi vKl(ar) + Di d1(p, r )  + Ei  &,(pi r ) ,  (2.44) 

where 
Jiac 

/'3F = a2-- for i = 1,  2. 
mi 

(2.45) 

(2.46) 

We first apply the two electrostatic boundary conditions (2.42) to get the 
constants a3 and a4 in terms of 7: 

(2.47) 

(2.48) 

From (2.46), (2.47) and (2.48) we get $ ( r )  in terms of 7. 

(2.36)-(2.40) we get a (6 x 6) system of equations of the form 
Substituting (2.23), (2.26), (2.27), (2.41), (2.44), (2.46), (2.47) and (2.48) into 

AX = 0. 
The matrix A :  

(2.49) 

where w is the growth rate 
w = - lac,  

(2.51) 

(2.52) 

(2.53) 
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and where I reflects the electrostatic contribution to the stability of our system in 
the normal stress balance 

(2.54) 

In (2.54) @: and @;r are the first and second derivatives of the base state electrostatic 
potential 0' a t  the interface, which are 

@; = K ( a l J l ( K ) - a 2 K l ( K ) ) ,  (2.55) 

(2.56) @:r = Kl%(KIo(K) - - I1 (K) )  + a 2 ( K K o ( K )  +Kl(K))I. 

Finally x is the vector of the constants of integration 

(2.57) 

The stability of the system is determined by the implicit equation for w ( a )  which 

det (A)  = 0. (2.58) 
we can write as 

Below we solve (2.58) numerically to get a dispersion equation of the form 

(2.59) 

We will choose to represent neutral curves as the electrostatic parameter Q versus 
the wavenumber a with the other dependences in (2.59) as parameters. Since the 
neutral states are non-flowing, these neutral curves, unlike the growth rates, will be 
independent of the fluid mechanical parameters J and m. 

3. Results 
Using the UNPACK subroutines ZCECO and ZGEDE, we solve (2.58) numerically for 

the three cases that title the forthcoming subsections. In the results detailed here, the 
computed values of c are always purely imaginary (i.e. the calculated real parts are 
typically many orders of magnitude smaller than the calculated imaginary parts) 
and thus disturbances do not propagate. This is expected because the base state is 
one of zero flow. In the calculations given below, a new parameter E given by, 

enters to rcplace a. 
3.1. Pure capillarity (Q = 0) 

In this section we present the results in the absence of electrostatic effects which 
follow by setting Q equal to zero. The remaining parameters that determine the 
stability of the system are the surface-tension parameter J ,  the viscosity ratio m and 
the film thickness parameter c. Figures 2(a)-2(c) are typical growth rate versus 
wavenumber curves which illustrate the dependence of w, us. 01 on these groups. Each 
of these shows the universal and well-known behaviour that waves smaller than the 
interfacial circumferences are stable while all other are unstable and there is a fastest 
growing wave. These curves are new ; they extend the results of Goren to include the 
influence of a core fluid. 

8-2 
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FIGURE 2. Dependence of the growth rate (0,) on the wavenumber (a) for capillary-driven 
instability: ( a )  J-dependence and the long-wave expansion, E = 0.5, m = 1, Q = 0;  ( b )  m- 
dependence, E = 0.5. J = 1000, Q = 0 ;  and (c) €-dependence, J = 1000, m = 1, Q = 0. 

a 
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w,3m 
€3 

0.30 
c = o . 1  

0.25 
Lubrication result 

0.20 
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0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 3. Comparison of the lubrication result (3.6) and the exact numerical solution 
(~=0.1,0.2,0.3,0.4,0.5) .  J =  1000, m =  1 ,  & = O .  

U 

As shown in figure 2 ( a ) ,  increasing J retards the growth. The simplest way to 
understand figure 2 ( a )  is to note that since time is written in units of b lRl /a ]  and 
the wavenumber in units of [l/Rl], increasing J in this figure can only be interpreted, 
in terms of physical variables, as increasing p. Since this increases the fluids’ inertia, 
the unstable growth rates should decrease, as figure 2 ( a )  demonstrates. Figure 2 ( b )  
shows that increasing m also has a retarding effect. This is because, with p1 held fixed, 
increasing m corresponds to  increasing the film fluid’s viscosity and the additional 
fluid resistance slows the growth. On the other hand by increasing B with R, fixed one 
increases the film’s thickness. This decreases the viscous resistance in the film, 
allowing the instability to grow faster (see figure 2c) .  

As a way of checking our numerical results we introduce the asymptotic expansion 
for long waves (a-tO) used by Yih (1967), 

and q5 = qw + q5% + O(a2), (3 .4)  

into the governing equations and solve for the leading-order term in c.  The first non- 
vanishing term, c(l), in this expansion is found to be purely imaginary and is given 
by dl) = c:) where 

]i. (3 .5)  [ 
(We arrive a t  (3 .5)  as the result for leading order in 01 in two ways. In  the first we 
substitute the above expansions (3 .2)  to (3 .4)  into the Orr-Sommerfeld equation and 
solve the leading-order problems sequentially. Alternatively, we begin by separating 
the modified Bessel functions in the exact equation (2.49) into its logarithmic and 
power series terms. The symbolic algebraic calculations (using MACSYMA) reveal that 
all terms logarithmic in a cancel identically and lead to  (3 .5) .  This results justifies the 
proposed expansions (3.2)-(3.4) as simple power series in 01.) 

4(a4 + m - 1) log ( a )  + (m - 4) a4 + (8  - 4m) u2 + 3m - 4 
16(ma4 + m2 - m )  

cp = - 
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The asymptotic expression (3.5) appears in figure 2 ( a )  along with the exact results; 
the agreement for long waves is evident. Both the asymptotic and the exact results 
indicate that the growth rate becomes independent of J for long waves. This is 
because the dynamics at  long waves becomes lubrication-like, and the influence of 
the fluids' inertia becomes negligible. 

With the exact results we are in the position to assess how well lubrication theory 
describes the system dynamics for thin films (in the limit of e+O). In lubrication 
theory the radial lengthscale in the film is smallcr than the axial scale and it easily 
follows (see Frenkel et al. 1987) that, for m, 01 and J of order one (in e), the growth 
rate is given by 

€3 

3m 
w, = -(O12-O14). 

Figure 3 is a comparison of the lubrication result and the exact solution. Clearly the 
agreement is exceptional even for E as large as 0.2 for the parameters chosen. Finally, 
in the limit of E --f 0, the Yih result should coincide with the order-u2 term in the 
lubrication expression ; in fact, a straightforward expansion of (3.5), in powers ofs  for 
a = 1/( 1 -€), confirms that it does. 

3.2 The injluence of a double layer of charge for an infinite outer region (Q  =k 0,  e +  1) 

In this section we include the effect of the electrostatic double layers (Q =k 0) for the 
case of an infinite outer region (€+ 1). In this limit the dispersion equation depends 
only on the parameters J ,  m, K and Q .  Thus only the double layer around the 
interface contributes to the stability, and the sign of the interface potential does not 
effect the stability of the system. 

The non-oscillatory neutral curves for this system derive solely from the normal 
stress balance and are given by 

(3.7) 

where B is the electrostatic contribution given generally by (2.54) and specifically in 
the limit E +  1 by 

QB + 1 - 01' = 0, 

As noted they are independent of the hydrodynamics and are a function of the 
electrical parameters Q and K only. For Q = 0 the capillary instability of Tomotika 
(1935) obtains and the system is stable only to disturbances having 01 2 1. 

As the dimensional interfacial radius R, --f co, the system becomes planar. 
Equation (3.7) with dimensional variables and with leading-order, large-argument 
expansions of the Bessel functions (c.g. Abramowitz & Stegun 1972) gives 

€ 6 1 
-a2a+ K 2 ( y - K )  + K ( Y - K )  - 

4x 4x R, 

As Rl+ co (with 5 = Y / K ) ,  it becomes 

€ 
u2a--e@;K3(5-1) = 0. 

4R 
(3.10) 
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FIGURE 5. The K-dependence of infinite-outer-region growth rate curves (w, us. a).  Q = 0.3, 
J = 1000, m = 1. 

This recovers Miller & Scriven's (1970a, b ) )  planar, constant surface potential, 
marginal interfacial stability result for two fluids with equal densities. 

Figure 4 shows neutral curves for different values of the inverse Debye length 
parameter K. For comparison figure 5 shows growth rate curves for the same values 
of K at  a particular value of Q (Q = 0.3) and for J = lo3 and m = 1. The crossing 
points of the Q = 0.3 line with the neutral curves of figure 4 agree perfectly with the 
changes of sign of the growth rate curves of figure 5 .  Figure 5 also includes the growth 
rate curve for pure hydrodynamics Q = 0 in which case the system is stable for a 2 
1. The intersections of the pure hydrodynamic growth rate curve with the other 
growth rate curves (points a, b, c, d, e ,  and f i n  figure 5 )  are the points where the 
electrostatic contribution is zero (gm = 0) since even for the dynamic case, the 
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influence of the double layer enters only through the parameter &=. Since &= is zero 
a t  these points, from (3.7), they coincide with the neutral curves' singular points 
manifest in figure 4. 

To interpret the marginal curves. consider first long and moderately long waves. 
A short calculation shows that as a + 0 the electrostatic contribution gm up to order 
a2 is 

&% = -b,+b,a'. (3.11) 
where b, and b, are given by 

(3.12) 

and 

Sumerical calculation shows that, for every K .  b, and b, are both positive and b, is 
always grcater than b ,  (b,  > b, > 0). 

By inserting the above expansion into the neutral stability equation (3.7) the 
following criterion for stability emerges for long and moderate waves. 

(1  - Qb,) - ( 1  - Qb,) a2 < 0 (stable) 

> 0 (unstable). (3.14) 

Thus for this range of wavelengths one can interpret the electrostatic influence as a 
pure reduction of the surface tension for both the circumferential and the longitudinal 
curvature. However, the reduction in the surface tension corresponding to each of 
these curvatures is different, it being Qbo for the circumferential and Qb, for the 
longitudinal. From figure 4 and the above expansion we see that, for very long waves, 
only the order-a0 terms in (3.14) are important. If Q is larger than a critical value 
Q* = l /b ,  the destabilizing effect of the circumferential curvature can be eliminated 
and the system becomes stable to such disturbances. However, at some wavenumber 
a*, 

(3.15) 

the fact that the corresponding longitudinal tension is negative ( 1  - Qb, < 0 and 
b, > b,) causes the system to become unstable for shorter wavelength disturbances 
(see figure 4, points A, B and C). Figure 5 also includes this effect; for the chosen 
value of Q (Q = 0.3) the last three growth rate curves ( K  = 8, 10 and 12) start as 
negative (stable) and then at some wavenumber they become positive (unstable) (see 
figure 5 ,  points A, B and C). For even shorter waves the system becomes stable again 
because the lower right branches of the neutral curves asymptote to infinity. This 
behaviour is given analytically by 

(3.16) 

A physical interpretation is in order. For very short waves 8 is positive (destabilizing) 
and linear in a. The asymptote of the lower branch, described by (3.16), becomes a 
balance of the order-a2 stabilization of the longitudinal curvature and this order-a 
destabilization of 8. Thus at high a the electrostatic destabilization has been reduced 
from order-a, (cf. (3.14)) to order-a. As in Miller & Scriven's case, wave-wave 
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interactions of double layers a t  very short wavelengths account for this suppression 
of electrical destabilization, allowing surface tension’s stabilization to dominate in 
this regime. 

If, on thc other hand, Q is less than l /bo ,  the stabilizing electrostatic effect docs not 
overcome the unstable nature of the circumferential curvature and the system is 
unstable for the longest waves (i.e. for ( 1  -Qb,) > 0). For this case there are two 
possibilities: (i) Qb, < 1 or (ii) &b2 > 1.  If Qb, < 1, then the longitudinal surface 
tension ( 1  -Qb,) is positive and stabilizes the system a t  a value of a given by (3.15) 
(see figures 4 and 5, points D and E), or, in fact, the purely hydrodynamic point (a, 
&) = (1,0).)  Since b, > b,, a* > 1,  which accounts for the receding of the critical 
wavenumber to shorter waves relative to  the pure hydrodynamics. Moreover, the 
electrical effect is stabilizing to the left of &: &,(a) = 0, and destabilizing to its right. 
Thus since CC < 1,  the points (a, Q) = (0, l /bo )  and ( 1 , O )  have qualitatively different 
behaviour with increasing Q and therefore cannot lie on the same branch of the 
neutral curve. 

If Qb, > 1, then the longitudinal surface tension is negative and also destabilizes 
the system. In this range of Q ( l / b ,  > Q > l /b, )  the system never becomes stable in 
the quadratic range ((3.15) has no real roots), but it does become stable at higher a 
because of unfavourable wave-wave interactions described by (3.16) and discussed 
above. This accounts for the sudden flattening of the right branches of the neutral 
curves in figure 4 and explains why the (& = 0.3) line does not intersect the ( K  = 6) 
neutral curve in the quadratic range. 

From figure 4 it appears that  the larger the Debye length (the smaller the K )  the 
larger the Q has to be in order for the electrostatic contribution to stabilize for long 
waves or to  destabilize for short waves. This can be explained as follows : a t  constant 
potential the Debye length is a measure of the length over which the electrostatic 
potential changes from its interfacial value due to  absorbed ions to its reference value 
far from the interface. Thus a larger Debye length defines a weaker gradient of the 
base state potential Go, i.e. a weaker electric field. Clearly, then, a larger Q is needed 
to achieve the critical electrostatic effect. 

It is worth noting that these results apply equally well to the problem of a jet of 
uniform velocity in a vacuum or a gas. By a simple coordinate transformation, one 
can see that the growth rate in the case of a jet differs from our results solely by the 
addition of an imaginary part equal to  the jet’s velocity. Je t  problems in the presence 
of axial electric fields have been the subject of previous investigators (Saville 1970, 
1971 ; Melcher & Taylor 1969). 

3.3 The inJluence of a double layer of charge for a j n i t e  outer region (Q =I= O,R, < C O )  

In  this section we present the results for the most general case, where the outer region 
is finite and the electrostatic effects are present. These results reduce to  those of $3.1 
when Q = 0 and to the results of $3.2 when e +  1.  This dispersion equation of this 
section depends on all the parameters e ,  J ,  m, K ,  Q and A@/@I. 

The non-oscillatory neutral curves again obtain from (3.7) with d given by the 
general expression (2.54). As before, the neutral curves are independent of the 
hydrodynamics but are now functions of the film parameter e and the electrical 
parameter A@/@, as well as of Q and K .  Two cases have qualitatively different 
neutral curves and thus merit independent discussions. The first case is when the 
base state volume charge density is everywhere of the same sign. Interfacial 
perturbations cause unfavourable like-charge interactions between the interfacial 
and wall double layers in the regions where the perturbation has thinned the film. 
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FIGURE 6. The €-dependence of the stability of an electrolyte film for A@/@, = 0, K = 10. (a) 
Neutral curves of type A for strong double-layer repulsion ( E  = 0.1,0.2,0.3,0.4). (6) Neutral curves 
of type B for weak double-layer repulsion ( E  = 0.6,0.7, 1.0). ( c )  Base state electrostatic potential 
profiles for different E.  (d)  Dependence of leading-order terms in the expansion of d (3.11) as a 
function of E .  

c; 

These interactions stabilize the system and motivate the name double-layer 
repulsion. In the second case, the diffuse layer adjoining the fluid interface is opposite 
in sign to that next to  the wall. Here film thinning leads to  favourable interactions 
between these opposite charges and this tends to destabilize the system. This case is 
referred to as double-layer attraction. 

3.1.1. Double-layer repulsion 

The non-dimensional base state volume charge density p", non-dimensionalized 
with en,, is given by 

p:(r)*= - 2@0(r) .  (3.17) 

It is clear from (3.17) that p: is everywhere of the same sign as long as @O(r) has that 
property. This can be realized when A@/@I < 1.  For discussion purposes, in this 
subsection we shall chose the simplest case of A@/@I = 0. Two types of neutral 
curves (A and B) exist. Type B neutral curves are similar to  those from the previous 
section where a singularity appears a t  some a < 1. Type A neutral curves are new; 
a singularity appears a t  some a > 1. These curves appear in figures 6(a)  and 6 ( b )  
which vary e at  fixed K .  Figure 6(c) shows corresponding potential profiles for the 
values of E ,  K and A@/@I chosen. 

As in the previous section, expanding the parameter d in powers of a up to order 
a2 greatly aids in the explanation of the resulting curves ; thus d = - bo + b, a,, where 

(3.18) 

and b, is detailed in the Appendix. Again from (3.7), the system is stable to long- and 
moderate-wavelength disturbances when (1 - Qb,) - ( I  - Qb,) a2 is less than zero, and 
unstable to such disturbances when this parameter is greater than zero. Consider first 
the neutral curves in figures 6 (a) and 6 (b)  which describe the influence of changing 
the film thickness with the Debye length ( K )  held fixed. When E is large ( E  2 0.5) the 
film is thick enough for the Debye length chosen ( K  = 10) so that the diffuse double 
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layers adjoining the interface and wall effectively do not interact and a region of 
nearly zero volume charge density cxists (cf. figure 6c) .  Only the double layer next 
to the interface affects the stability, and marginal curves like those of the infinite 
outer region case obtain. As in that case b, and b ,  are both positive and b, is greater 
than b, (b ,  > b, > 0 ) .  For Q > l / b ,  the system is stable for small a,  then becomes 
unstable (at a* as given by ( 3 . 1 5 ) )  and finally becomes stable due to the asymptotic 
behaviour of € as a+ 00 given by 

(3 .19)  

For Q < l / b ,  long waves are unstable arid then eventually stabilize at a* as given by 
(3 .15 )  if Qb, < 1 and outside the quadratic range if Qb, > 1. As can be seen in figure 
6 ( b )  thc neutral curves for E = 0.6 and above quickly merge in to the infinite case 
curve ( E +  1 ) .  

When E is lcss than 0.5 the region of zero volume change density in the film 
disappears, and the double layers interact (cf. figure 6c) .  This interaction stabilizes 
the system increasing b, (for e > 0.1) and decreasing b, as E decreases (cf. figure 6 d ) .  
(As E -> 0, 6, and b, go to zero because the base state potential profiles become flat.) 
As b, becomes less than b,, the two-branch neutral stability structure transforms 
from that of figure 6 ( h )  to that of figure 6 ( a ) .  For the longest waves, the stability is 
qualitatively unchanged in figure 6 ( a )  from figure 6 ( b )  since only b, is relevant there. 
For Q > l / b , ,  the system is stable while for Q < l / b ,  it is unstable. However, since 
b, < b,, a* < 1 in (3 .15 )  for Q < l / b ,  and the critical wavenumber shifts to longer 
waves. Since the singularity in thc neutral curve, i.e. the ti for which &(ti) changcs 
sign, is now to the right of 1, the electrical effect is stabilizing for all a < 1 with the 
magnitude of this stabilization increasing with Q .  Thus onc branch of the neutral 
curve can connect the points (a ,&)  = (0.  l / b , )  and ( 1 , O ) ;  the axial curvature 
stabilizes the system at small a (<  1)  and a small unstable lobe replaces the large 
unstable region between the branches of figure 6 ( b ) .  For Q > l / b o ,  long waves are 
stable. Importantly, a window of stability for all a exists from the value ( l / b , )  to the 
minimum of the upper branch, which cannot be in the quadratic range. Note that the 
window widens as E decreases and double-layer repulsion becomes more dominant. 

Lastly, for Q above the minimum the system is destabilized a t  smaller waves. This 
may be attributed to  the change in sign of the coefficient of the axial curvature 
1 -Qb, < 0 as well when b, > 0 ( E  = 0.4) ; this part of the upper branch is given by 
(3.15) which is in the quadratic range. For smaller E however, b, is negative (cf. figure 
6 d )  and the axial curvature is stabilizing for all &. Thus for all these cases the 
transition to the unstable region for moderate a must be attributed solely to higher- 
order terms in a in the expansion of &. Here too unfavourable wave-wave 
interact ions restabilize the system to the shortest-wavelengths disturbances, 
reducing the dependence of & on a to order-a from ordcr-a2 (cf. ( 3 . 1 9 ) ) .  For this part 
of the upper branch the marginal point is determined as the competition between the 
order-a destabilization caused by & and the order-a, stabilization caused by the axial 
curvature. 

The dependence of the neutral curves on K a t  fixed E for the potential distributions 
(not shown) is similar to that of figures 6 ( a )  and 6 ( b )  : as K decreases at fixed E ,  the 
double layers interact more and a transition occurs from the marginal curve 
structure of the infinite case (type B as in figure 6 6 )  to that of typc A (as in figure 
6 a ) .  In the next subsection on double-layer attraction we discuss further the 
relationship between small E and large K .  



An annular electrolyte &id surrounding a dielectric-juid core 167 

0.10 

0.05 

0 

w, -0.05 
( x  lo-’) 

-0.10 

-0.15 

-0.20 
0 0.5 1 .o 1.5 2.0 

a 

FIGURE 7. Growth rate curves as a function of Q for double-layer repulsion. E = 0.4, 
J = 10, m = 1, K = 10, A@/@, = 0. 

The influence of double-layer repulsion on the growth rate appears in figure 7 as 
w, as a function of Q with A@/@l = 0 and with K ,  e, J ,  and m fixed. Also plotted on 
the figure (for Q = 0.05) is the long-wave (Yih 1967) expansion for w, obtained from 
(3.2)-(3.4). Again do) = 0, and c(’) is purely imaginary and given by 

c“) = cL”( 1 - Qb,), (3.20) 

where cj,l) is the same as in (3.5). The Yih approximation, which is J-independent, 
and the numerically exact solution converge as a+O. Figure 7 clearly shows three 
different behaviours. When Q < l /bo ,  the system is unstable for a band of long waves. 
These are located inside the unstable lobe of figure 6a  (e = 0.4). For these values of 
Q ,  it is clear that  double-layer repulsion has retarded the growth rate relative to the 
growth rate exclusively due to capillarity (cf. the pure hydrodynamic curve). For 
l/b, > Q > 116, the window of stability exists and this is shown by the always-stable 
(w, < 0, Q = 0.15) growth rate curve. Finally, for Q > l/b2, the upper branch of the 
type A neutral curves becomes important and positive growth rates occur at 
wavenumbers greater than 1 (a > l ) ,  although they must again stabilize for 
sufficiently large a (u,+- co as a+ co). Importantly, the growth rates derived from 
the upper-branch unstable band are much larger than the pure hydrodynamic rate 
(& = 0). Again the intersections of the pure hydrodynamic curve with the (& + 0) 
curvcs defines the value of a(@ at which the electrostatic contribution is zero 
(&(a) = 0). Since d is only a function of e, K and A@/@l and because these parameters 
are fixed in figure 7, all the curves intersect at the same value of a. This value of a 
defines the singularity that separates the upper and lower branches of the marginal 
stability curve (figure 6a, 6 = 0.4). 

3.3.2. Double-layer attraction 

In this subsection we examine the case in which the diffuse layers next t o  the fluid 
interface and the wall have volume charge densities p: of opposite sign. It is clear 
from (3.17) that in order to obtain diffuse layers of opposite charge the sign of @I 

must be opposite to QW, or A@/@l > 1.  Plots of potential distributions 
for various negative and positive values of A@/@l appear in figure S(c ) ,  and figures 
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a 

8(a)  and 8 ( b )  give the corresponding neutral curves. As expected, when A@/@I < 1 
and the volume charge density is everywhere of the same sign, the double layers 
repel, and for the values of E and K chosen (0.3 and 10, respectively) in figure 8 ( a ) ,  
type A neutral curves characterizing strong double-layer repulsion obtain. As A@/@l 
increases from 1,  the charge of the diffuse layers next to the wall and next to the fluid 
interface take on opposite signs. This change in diffuse layer sign destabilizes the 
system because in regions where the film thickness has decreased charges of unlike 
sign (favourably) approach one another. 

As A@/@l increases from an initially strong double-layer repulsion configuration, 
b, decreases and b, increases, and the unstable lobe of the type A neutral curves 
grows. At a critical value of A@/@I ( x 1 for the values of E and K chosen) b, becomes 
greater than b,, and a transition back to type B neutral curves occurs (figure 8b) .  
Finally, as A@/@l increases further, b, decreases through zero to negative values and 
thc upper branch of the type B curves disappears leaving only the lower branch. This 
branch (described by (3.15) when Qb, < 1) recedes with increasing A@/@l as b, 
increases, i.e. the stabilization of the axial curvature decreases. Finally, as in the 
previous cases the lower branch of figure 8 ( b )  goes as O(a) for a + co ; thus in the case 
of double-later attraction for which there is only one branch (b, < 0) ,  the system 
becomes unstable to an increasingly wider band of wavelengths as Q increases. 

Figure 9 shows the influence of double-layer attraction on the growth rate for 
m = 1, ,I = lo3 and Q = 0.04 and for the same values of E and K as in figure 8. Points 
A, B, C and D in figures 8 (a ) ,  8 ( 6 )  and 9 are the wavelengths of zero growth. Figure 9 
shows that as double-layer repulsion fades (increasing A@/@J the window of 
stability disappears and as double-layer attraction takes over, the maximum growth 
rate and the wavenumber of maximum instability increase until they exceed those 
for pure capillarity. 

Double-layer attraction can also occur even when the volume charge density is 
everywhere of the same sign if the surface charge densities of the two interfaces 
(film-core and film-tube) are of opposite sign. This can be achieved either by 
reducing the film thickness E keeping the Debye length ( l / K )  constant or by 
increasing the Debye length (decreasing K )  keeping the film thickness constant, in the 
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FIGURE 10. Stability of an electrolyte film in the presence of double-layer attraction due to surface 
charge density. K = 10, A@/@I = - 1 .  (a) The dependence of neutral curves for A@/@I $: 0. (b) 
Base state elertrostatic potential profiles for different values of E and A@/@* += 0. 

case where the potential difference A@ is fixed and non-zero. This can be shown as 
follows. First the 

then by defining 
( E  + 0) one gets 

governing equation (2.21) for the base state potential is 

(3.21) 

a film variable y as EY = l / ( l - ~ ) - r ,  and letting E go to zero 

- = 0. 
d200 
dr2 

(3.22) 

The solution of (3.22) is linear with respect to r ,  so when A@ =I= 0 the surface charge 
densities ((T, = -n. V@O) of the two interfaces are of opposite sign. On the other hand 
if one lets the Debye length go to infinity ( K + O ) ,  then (2.21) becomes 

d2@0 ld@O -+-- = 0. 
dr2 r dr 

(2.23) 
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The solution of (2.23) is @' = d, In ( r )  +d,  which does not have an extreme ; so, again 
the surface charge densities of the interfaces are of opposite sign. 

Figure 10 ( b )  shows plots of potential distributions (0- @I)/@I for some decreasing 
values of the film thickness ( E  = 0.6,0.5,0.4,0.3,0.2,0.1). It is clear from that figure 
that as the film thickness decreases the potential distribution in the film becomes 
linear and the surface charge density a t  the film-core interface changes sign. Figure 
10 (a) shows the corresponding neutral curves. As expected, when the two interfaces 
are far apart ( E  = 0.6 and 0.5) we get type B neutral curves, similar to  the ones from 
the infinite outer region case. When the interfaces are brought closer together ( E  = 
0.4, 0.3 and 0.2) the double layers repel and type A neutral curves characterizing 
double-laycr repulsion obtain. At some critical film thickness, which is a function of 
the Debye length and the potential difference, the potential distribution becomes 
linear, forcing the surface charge densities of the two interfaces to become of opposite 
sign; a strong double-layer attraction resuIts (see right-hand graph in figure 10a). 
Similar neutral curves arise for the second case ( ~ + 0 ) .  

4. Summary and conclusions 
The results presented in $ 3  bear directly on the critical question of how to stabilize 

an annular film from the capillary instability. Figures 6 ( a )  and 8 ( a )  have windows 
of &-values that emerge only when the volume charge density is everywhere of the 
same sign. In  such cases double-layer repulsion is strong enough to stabilize the 
action of the circumferential curvature while not a t  the same time reducing the 
surface energy to  the point where the axial curvature tension is no longer positive 
(i.e. l / b ,  < Q < l / b 2 ) .  For moderate E and K ,  decreasing A@/@I may realize this. 
Physically, decreasing proceeds when one sets the wall potential higher than 
that of the reservoir for > 0. Then, a t  fixed E and K ,  a decrease in A@/@l brings 
on and then widens a band of complete stability (cf. figures 8a and 8 b ) .  Alternatively, 
for fixed, negative GW, adsorption of an anionic surfactant can force GI negative by 
lowering the interface potential relative to  the bulk. 

Consider, as a numerical example of complete stabilization, an electrolyte film 
surrounding an oil core in a rock pore with a characteristic diameter of 100 pm and 
with the anionic surfactant sodium dodecal sulphate (SDS) introduced in the 
electrolyte film. SDS adsorbs onto the oil-water interface creating a surface 
potential. I n  this numerical example, we assume that the surfactant also adsorbs 
onto the rock wall in the same way that it adsorbs to the oil-water interface so that 
the potential difference between the two interfaces is zero (A@ = 0). Havenbergh & 
Joos (1983) and Bleys & Joos (1985) have shown that the adsorption of SDS a t  the 
air-water interface may be described by a Langmuir adsorption isotherm : 

where r is the surface surfact,ant concentration, rm is the maximum surface 
surfactant concentration, a is the Langmuir constant and p;(r = f )  is the volume 
charge density a t  the interface. The constants a and rm have been calculated for the 
air-water interface. Assuming the same constants for adsorption onto an oil-water 
interface, one can calculate the surface charge density and surface potential. Then 
from (2.43) one can find the critical surface tension corresponding to the lower branch 
of the window of stability of type A ncutral curves (Q = l /b , , ) .  Systems with surface 
tension below this critical value can lie in the window and be stable. Figure 11 shows 
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FIGURE 11. Pljumerical example of complete stabilization (critical surface tension versus 6 ) .  
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curves of the critical surface tension versus the film thickness E for various values of 
the surfactant concentration no. From this figure we see that, as an example, if the 
oil-water interfacial tension of the system is reduced to 10dynes/cm (by, say, 
introducing a second, non-ionic surfactant), then for a trace surfactant concentration 
of SDS no = 8 x 10-l' mole/cm3 the system can become stable for film thickncsscs in 
the range ( E  = 0.001 to 0.01). When surface potentials exceeding the Debye-Huckel 
limit are necessary, for this regime, the above theory can only be used as a guideline 
for the calculation of stability windows. 

This band window of stability which occurs with double-layer repulsion represents 
the only case of stability to all wavelengths. In an infinite system (R2+ co or e+  1) 
this stabilization is not possible : although surface tension lowering can stabilize the 
circumferential tension at long waves (when Qb, > i ) ,  b, > b, > 0 implies that the 
longitudinal tension is necessarily also negative (Qb, > i ) ,  which leads to  an unstable 
band for moderate wavenumbers (cf. figure 4). This behaviour, however, both in the 
infinite case and in the finite case for weak or non-existent double-layer repulsion can 
be advantageous for the emulsification of the fluids, i.e. t o  produce fluid droplets that 
have radii significantly smaller than R,. 
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8 K ( I o ( K ) K a ( K a )  - I , ( K U )  K0(KH2 
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